Skip to main content

Corrosion and Erosion

  • Both corrosion and erosion happen due to certain external actions on a surface. Corrosion means the destruction of materials through chemical reactions whereas erosion means the carrying away of the topsoil from the surface of the earth.
  • Corrosion normally happens because of chemical reactions. Erosion occurs by chemical reactions and by certain forces of nature. 
  • Corrosion also means the loss of electrons from the metals when it comes in contact with the moisture and oxygen in the atmosphere. Erosion happens because of natural forces like water and wind. Other factors such as acid rain, salt effects and oxidation of materials are also known to cause erosion.
  • In terms of the process, corrosion is an electro chemical process whereas erosion is a physical process. The corrosion of metals is often referred to as rusting and it is evident in the material itself. Erosion is a natural process that removes or carries away materials from one place to another. 
For instance, when sand is carried away from the beach or riverbanks, it is still sand even after erosion. Corrosion isn’t like that. When corrosion takes place, the material will be transformed to another chemical compound known as rust.
  • Various types of corrosion include galvanic, crevice, pitting, intergranular and selective leaching. Erosion also involves several different processes like weathering and dissolution. 
  • Both corrosion and erosion can be prevented. To prevent corrosion, a protective layer is coated on the surface of the metal that constantly comes in contact with the atmosphere. 
  • Terracing the terrain or planting more trees on the surfaces where erosion is likely to happen can prevent erosion

Comments

Popular posts from this blog

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Main engine interlocks

Interlocks are provided so that the engine can be started or reversed only when certain conditions have been fulfilled. When there is a remote control of engines, it is essential to have interlocks. This reduces the possibility of engine damage and any hazards to the operating personnel. Turning gear Interlock . This device prevents the engine from being started if the Turning gear is engaged. Running Direction Interlock . This prevents the fuel from being supplied if the running direction of the engine does not match the Telegraph. Starting Air Distributor in end position . This prevents starting from taking place if the shifting of the Distributor has not been completed. Main Lube. oil pressure, Piston cooling pressure, Jacket water pressure, and important parameters must be above the required minimum. Auxiliary Blower Interlock . The Auxiliary Blower is provided in case of Constant pressure turbo charging. Air Spring pressure Interlock . In case of the present generation

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as minor is along the  direction of maximum stress.