- The shape and geometry of the combustion chamber is very important from the point of view of creating turbulence in the combustion space. As the air enters through the air inlet valve, exhaust gas is blown out through the opened exhaust valve. During this time, the incoming air will always follow the geometry of the combustion space.
- The geometry of the combustion space governs the movement of the incoming air and exhaust gas. This creates a large amount of turbulence, which will be useful in the proper combustion of the fuel, and thus increase the thermal efficiency of the engine.
- Also, turbulence is created because of the shape of the crown of the piston which is part of combustion chamber geometry.
- As the air enters the chamber, it will hit against the crown of the piston and create turbulence due to change in direction, leading to greater combustion of the fuel.
The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators
Comments
Post a Comment
If you have any doubts.Please let me know