Skip to main content

Green Engines

 The ‘G’ prefix before an engine means it has a design that follows the principles of the large-bore, Mark 9 engine series that MAN Diesel & Turbo introduced in 2006 with an ultra-long stroke that reduces engine speed, thereby paving the way for ship designs with unprecedented high-efficiency.

Specification of G-80ME-C9
            ▪    Power kW/cyl    : 4,450
            ▪    Engine speed rpm    : 68
            ▪    Stroke mm        : 3.720
            ▪    MEP bar        : 21
            ▪    Mean piston speed m/s    : 8.43
            ▪    Length mm (7 cylinder)     : 12.500
            ▪    Dry mass ton (7 cylinder)    : 960
            ▪    SFOC, L1 (g/kWh)        : 167

The G-type achieves SFOC reductions through a combination of several factors, such as:
            ▪    increased scavenge-air pressure
            ▪    reduced compression ratio (twostroke Miller timing)
            ▪    increased maximum combustion pressure
            ▪    adjustments of compression volume and design changes.

The G-type engine is characterised by:
  • low SFOC and superior performanceparameters thanks to variable,electronically controlled timing of fuelinjection and exhaust valves at anyengine speed and loadappropriate fuel injection pressureand rate shaping at any engine speedload
  • flexible emission characteristics withlow NOx and smokeless operation
  • perfect engine balance with equalisedthermal load in and betweencylinders
  • better acceleration in ahead andastern operation and crash stop situations
  • wider operating margins in terms ofspeed and power combustions
  • longer time between overhauls
  • very low speed possible even forextended duration and Super DeadSlow operation manoeuvring
  • individually tailored operating modesduring operationfully integrated Alpha Cylinder Lubricators,with lower cylinder oil consumption
  • an engine design lighter than its mechanicalcounterpart.

Comments

Popular posts from this blog

Differences between MC/MC-C and ME/ME-C engines

The electrohydraulic control mechanisms of the ME engine replace the following components of the conventional MC engine: Chain drive for camshaft Camshaft with fuel cams, exhaust cams and indicator cams Fuel pump actuating gear, including roller guides and reversing mechanism Conventional fuel pressure booster and VIT system Exhaust valve actuating gear and roller guides Engine driven starting air distributor Electronic governor with actuator Regulating shaft Engine side control console Mechanical cylinder lubricators. The Engine Control System of the ME engine comprises: Control units Hydraulic power supply unit Hydraulic cylinder units, including: Electronically controlled fuel injection, and Electronically controlled exhaust valve activation Electronically controlled starting air valves Electronically controlled auxiliary blowers Integrated electronic governor functions Tacho system Electronically controlled Alpha lubricators

Main engine interlocks

Interlocks are provided so that the engine can be started or reversed only when certain conditions have been fulfilled. When there is a remote control of engines, it is essential to have interlocks. This reduces the possibility of engine damage and any hazards to the operating personnel. Turning gear Interlock . This device prevents the engine from being started if the Turning gear is engaged. Running Direction Interlock . This prevents the fuel from being supplied if the running direction of the engine does not match the Telegraph. Starting Air Distributor in end position . This prevents starting from taking place if the shifting of the Distributor has not been completed. Main Lube. oil pressure, Piston cooling pressure, Jacket water pressure, and important parameters must be above the required minimum. Auxiliary Blower Interlock . The Auxiliary Blower is provided in case of Constant pressure turbo charging. Air Spring pressure Interlock . In case of the present generation...

Why is a man hole door elliptical in shape?

Any opening in a pressure vessel is kept to a minimum and for a man entry an elliptical hole  is lesser in size than the corresponding circular hole. More over it is prime concern to have a  smoothed generous radius at the corners to eliminate stress concentration. Hence other  geometrical shapes like rectangle and square are ruled out.  To compensate for the loss of material in the shell due to opening, a doubler ring has to be  provided around the opening. The thickness of the ring depends on the axis length along the  dirrection in which the stresses are maximum and the thickness of the shell. It is important to  align the minor axis along the length of the vessel, as the stress in this direction is  maximum. Longitudinal stress: Pd/2t where P= pressure inside the vessel, d= diameter of the arc, t=  thickness of the shell plating  Circumferential stress: Pd/4t  More over a considerable material and weight saving is achieved as...